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Abstract
Next to conventional cancer therapies, immunotherapies such as immune checkpoint inhibi-

tors have broadened the cancer treatment landscape over the past decades. Recent advances in

next generation sequencing and bioinformatics technologies havemade it possible to identify a

patient’s own immunogenic neoantigens. These cancer neoantigens serve as important targets

for personalized immunotherapy which has the benefit of being more active and effective in

targeting cancer cells. This paper is a step-by-step guide discussing the different analyses and

challenges encountered during in-silico neoantigen prediction. The protocol describes all the

tools and steps required for the identification of immunogenic neoantigens.

1 Introduction
Cancer is characterized by an accumulation of somatic mutations. This can result in

the development of abnormal cells that divide uncontrollably and have the potential

to invade or spread to other parts of the body. The expression of these somatic

mutations, however, subsequently generates cancer-specific actionable targets:

neoantigens. These tumor-specific antigens bind to human leukocyte antigens

(HLAs) molecules on the surface of cancer cells, enabling the immune system to

recognize them as foreign epitopes leading to the destruction of the cancer cell.

The unique array of neoantigens expressed by a patient’s tumor cells has led the

way to the development of personalized immunotherapy tailored specifically to

an individual’s tumor.

Identifying and targeting an individual patient’s own specific immunogenic

neoantigens to direct their immune system against the cancer cells has been a recent

focus in the field of cancer immunotherapy. This personalized approach, as we will

refer to it henceforth, can reap a more active and effective treatment: by comparing

the genetic profile of a patient’s tumor to their healthy tissue, mutations that result in
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the generation of neoantigens can be discovered. These neoantigens can then be

targeted in a tailored approach by immunotherapy. There are currently two leading

immunotherapeutic approaches which utilize neoantigens: cancer vaccination and

T-cell therapy. Cancer vaccines can involve stimulating the patient’s T-cells within

the body so that they may recognize neoantigens, whereas T-cell therapy genetically

engineers extracted T-cells from the patient so that, when they are reinfused, they are

able to recognize specific neoantigens. It must be noted that the field is still young:

the clinical successes that have been reported are still early involving phase I/II trials,

hence personalized immunotherapy has yet to be approved. In the last few years, it

has also become clear that neoantigen discovery faces several challenges impacting

therapy efficacy and applicability. Indeed, since each individual patient can poten-

tially express a considerable range of unique neoantigens with varying immunogenic

potential, optimal prioritization becomes paramount to correctly identify the action-

able ones, otherwise subpar therapies may be developed. This prioritization currently

relies on bioinformatics methods. Here tumor-specific variations are detected from

next-generation sequencing (NGS) data and the resulting neoantigens are inferred

and prioritized in-silico based on various parameters (Lybaert et al., 2022).

Designing an individuals’ personalized cancer treatment begins by comparing the

NGS data of both the normal and tumor tissues of the patient to identify the tumor

neoantigens. For this paper, both DNA and RNA sequencing is utilized. Whilst DNA

sequencing (DNA-seq) of both the tumor and a control tissue will provide informa-

tion about mutations that develop in the cancer cells, RNA sequencing (RNA-seq)

will reveal which of these are actually transcribed. This combination can help create

a comprehensive picture of the patient’s tumor and its neoantigens, and therefore

allows for a more precise and effective personalized cancer treatment approach

(Conesa et al., 2016).

This paper describes a state-of-the-art bioinformatics neoantigen detection

workflow comprised of four major steps: pre-processing and alignment, HLA-

typing, variant calling and neoantigen prioritization. Once confidence in the individ-

ual steps has been built, the individual steps can be joined and automated using a

workflow management tool to improve the efficiency and maintainability of the

neoantigen discovery process. This is expanded upon further in Section 5.

The first step, pre-processing, is driven by quality control (QC) where errors are

identified and, where possible, amended. These errors include the presence of adap-

tor sequences, poor-quality sequences at the start and end of the reads, polyA tails,

and overrepresented reads. Sequence read trimming can be performed to correct

some of these errors. It should be noted that trimming the reads too aggressively

can lead to a shorter read length, and thus a loss of information, which can negatively

impact the quality of mapping (Williams, Baccarella, Parrish, & Kim, 2016).

Once cleaned, sequence alignment to a reference genome can be performed to

identify regions of the genome fromwhich the reads originate. This step is performed

independently for the DNA and RNA data. It is important to find an alignment tool

that can both align reads that accommodate genomic variations such as mismatches,

insertions and deletions (INDEL), and—in the case of RNA-alignment—contain

31 Introduction

ARTICLE IN PRESS



non-contiguous genomic regions (Finotello, Rieder, Hackl, & Trajanoski, 2019).

Various post-processing practices are also applied here to generate better quality

reads including base quality score recalibration (BQSR) and, for RNA analysis,

marking duplicates and splitting reads into exon segments. BQSR is performed to

identify and correct any systematic errors in base quality scores generated by the

sequencing machine. This can result in an over- or under-estimation of the base qual-

ity scores; correcting these errors typically results in more accurate SNV calling

(Tian, Yan, Kalmbach, & Slager, 2016). It is important to mark duplicates in this

process, as they identify multiple reads that match the same position on the genome.

These can arise from PCR where reads are amplified to generate enough cDNA for

sequencing (Parekh, Ziegenhain, Vieth, Enard, & Hellmann, 2016).

HLA-typing is required to identify which neoantigens are presented on the

surface of cancer cells. The HLA molecules are the human form of major histocom-

patibility complex (MHC) molecules, the proteins on the surface of antigen present-

ing cells that bind the peptide antigens and present them for recognition by the

T lymphocytes (Abbas, Lichtman, & Pillai, 2019). Different HLA molecules present

different sets of neoantigens, therefore the likelihood of a neoantigen to be presented

at the surface of a cell is determined by the HLAs expressed there (Finotello

et al., 2019).

One of the most important steps in targeting neoantigens is somatic variant

calling. For the detection of neoantigens, single nucleotide variants (SNVs) and

indels are the most targeted form ofmutations when carrying out neoantigen-directed

therapies. As with the sequence alignment step, somatic variant calling is usually

carried out independently for both RNA and DNA data to reliably identify expressed

somatic variants from which neoantigens can be imputed for prioritization (Lang,

Schr€ors, L€ower, T€ureci, & Sahin, 2022).

The last step in the process is neoantigen prioritization, where the predicted

neoantigens are prioritized by their ability to be recognized by the T-cell receptor

when they are bound to the HLA molecule. Ideally, many factors will have their role

in neoantigen prioritization (Richters et al., 2019), however, here we will focus on

two main factors: (1) the expression of the gene hosting the neoantigen mutation,

which is determined using RNA-seq based gene expression analysis tools, and

(2) the antigens’ ability to bind HLA molecules, which is determined by peptide-

HLA (p-HLA) binding affinity prediction tools (Lybaert et al., 2022).

The aim of this paper is to allow the user to understand and reproduce the major

steps of neoantigen discovery for personalized immunotherapy. Here, we suggest

publicly available, state-of-the-art tools, whilst also giving the user the freedom to

deviate and expand, so as not to feel limited by following one constricting pipeline.

The outputs of many of these steps can be recycled into pipelines not listed in this

paper, for example for the identification of neoantigens derived from alternative

splicing, transposable elements, and gene fusions, which is recommended for explor-

ing more advanced personalized immunotherapy (Lang et al., 2022; Lybaert et al.,

2022). For every tool used in the pipeline demonstrated below, there are numerous

alternatives that can be explored to best match the user’s samples and skillset.

A comprehensive overview of such tools can be found in Lybaert et al.
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2 Materials
2.1 Input data
2.1.1 Samples
This pipeline was created for the analysis of WGS data, but it can also be used with

WES data with some small modifications.

Here, we use 3 WGS paired-end reads sequencing datasets:

1. 1 from normal DNA (30� coverage)

2. 1 from tumor DNA (90� coverage)

3. 1 from tumor RNA (30� coverage)

2.1.2 Genome reference files
Here is provided a table containing all the references used throughout this paper.

Whenever a reference is needed as an input in the sections below, we recommend

to follow the URL and download the specified file listed.

Genome
reference type File name

Source
name URL

hg38 (GRCh38)
reference genome

Homo_sapiens.
GRCh38.dna.alt.fa.
gz

Ensembl https://ftp.ensembl.org/pub/
release-108/fasta/homo_
sapiens/dna/Homo_sapiens.
GRCh38.dna.alt.fa.gz

hg38 (GRCh38)
reference
transcriptome

Homo_sapiens.
GRCh38.cdna.all.fa.
gz

Ensembl https://ftp.ensembl.org/pub/
release-108/fasta/homo_
sapiens/cdna/Homo_sapiens.
GRCh38.cdna.all.fa.gz

hg38 (GRCh38)
peptide reference

Homo_sapiens.
GRCh38.pep.all.fa.
gz

Ensembl https://ftp.ensembl.org/pub/
release-108/fasta/homo_
sapiens/pep/Homo_sapiens.
GRCh38.pep.abinitio.fa.gz

hg38 (GrCh38)
known variant sites
for elPrep

00-All.vcf.gz dbSNP https://ftp.ncbi.nih.gov/snp/
organisms/human_9606/VCF/
00-All.vcf.gz

hg38 (GrCh38)
known variant
sites- for GATK
Mutect2

00-All.vcf.gz dbSNP https://ftp.ncbi.nih.gov/snp/
organisms/human_9606/VCF/
GATK/00-All.vcf.gz

hg38 (GrCh38)
panel of normal

1000g_pon.hg38.
vcf.gz

GATK https://storage.googleapis.
com/gatk-best-practices/
somatic-hg38/1000g_pon.
hg38.vcf.gz

hg38 (GrCh38)
germline
population
resource

af-only-gnomad.
hg38.vcf.gz

GATK https://storage.googleapis.
com/gatk-best-practices/
somatic-hg38/af-only-gnomad.
hg38.vcf.gz

Continued
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2.2 Hardware
Neoantigen discovery is best performed on a high-performance computing infra-

structure as datasets can be quite large, hence may require significant computing

power. A commercial or private cluster infrastructure is therefore recommended.

In particular, the BQSR step described here requires 500Gb RAM on average—

any hardware solution considered should be mindful of this hard requirement.

• HPC infrastructure:

� 25+ cores

� 500+ Gb RAM

� 1+ Tb disk space

2.3 Software
Below are listed the tools required for executing the protocol. It is recommended to

download the latest version of each tool.

—cont’d

Genome
reference type File name

Source
name URL

hg38 (GrCh38)
interval list

wgs_calling_regions.
hg38.interval_list

GATK https://console.cloud.google.
com/storage/browser/_details/
genomics-public-data/
resources/broad/hg38/v0/
wgs_calling_regions.hg38.
interval_list

hg38 (GrCh38)
annotated
transcripts

Homo_sapiens.
GRCh38.103.gtf.gz

Ensembl http://ftp.ensembl.org/pub/
release-103/gtf/homo_sapiens/
Homo_sapiens.GRCh38.103.
gtf.gz

hg38 (GrCh38)
known cancer
driver genes

Cancer Gene
Census

COSMIC https://cancer.sanger.ac.uk/
census

Tool Name Manual Reference

FASTQC https://www.bioinformatics.
babraham.ac.uk/projects/
fastqc/Help/

Andrews (2010)

Cutadapt Required to run Trim Galore! Martin (2011)

Trim Galore! https://github.com/
FelixKrueger/TrimGalore/blob/
master/Docs/Trim_Galore_
User_Guide.md

Krueger, James, Ewels,
Afyounian, and Schuster-
Boeckler (2021)
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—cont’d

Tool Name Manual Reference

BWA https://bio-bwa.sourceforge.
net/bwa.shtml

Li (2013)

Samblaster https://github.com/
GregoryFaust/samblaster

Faust and Hall (2014)

GATK SortSam https://gatk.broadinstitute.org/
hc/en-us/articles/
4418062801691-
SortSam-Picard

McKenna et al. (2010),
DePristo et al. (2011), van
der Auwera et al. (2013)

elPrep https://github.com/ExaScience/
elprep

Herzeel et al. (2021)

GATK Mutect2 https://gatk.broadinstitute.org/
hc/en-us/articles/
360036730411-Mutect2

McKenna et al. (2010),
DePristo et al. (2011), and
van der Auwera et al. (2013)

GATK
GetPileupSummaries

https://gatk.broadinstitute.org/
hc/en-us/articles/
360037593451-
GetPileupSummaries

McKenna et al. (2010),
DePristo et al. (2011), and
van der Auwera et al. (2013)

GATK
CalculateContamination

https://gatk.broadinstitute.org/
hc/en-us/articles/
360036888972-
CalculateContamination

McKenna et al. (2010),
DePristo et al. (2011), and
van der Auwera et al. (2013)

GATK FilterMutectCalls https://gatk.broadinstitute.org/
hc/en-us/articles/
360036856831-
FilterMutectCalls

McKenna et al. (2010),
DePristo et al. (2011), and
van der Auwera et al. (2013)

STAR https://github.com/alexdobin/
STAR/blob/master/doc/
STARmanual.pdf

Dobin et al. (2013)

GATK
SplitNCigarReads

https://gatk.broadinstitute.org/
hc/en-us/articles/
360036858811-
SplitNCigarReads

McKenna et al. (2010),
DePristo et al. (2011), van
der Auwera et al. (2013)

Strelka2 https://github.com/Illumina/
strelka/blob/v2.9.x/docs/
userGuide/README.md

Kim et al. (2018)

bcftools https://samtools.github.io/
bcftools/bcftools.html

Danecek et al. (2021)

rtg tools https://cdn.jsdelivr.net/gh/
RealTimeGenomics/rtg-
tools@master/installer/
resources/tools/
RTGOperationsManual/index.
html

Cleary et al. (2014)

HLA-LA https://github.com/DiltheyLab/
HLA-LA

Dilthey et al. (2019)
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3 Methods
Each section of the methods segment is consistently organized in the following

format: (1) a general description of the tool and the command used to execute the

tool, (2) the input arguments followed by the files required to run the tool, (3)

any additional parameters that are either required or recommended to run the tool

with a short description as to what they do and (4) the output arguments (if needed

to be specified) and the expected output when running the tool.

It is recommended to browse the manual of each of the tools to fully understand

what each argument means and whether further optional arguments should be sup-

plied prior to executing the command. To encourage this, the software table includes

a manual column to direct the user to the current version of the manual for each of the

tools.

3.1 Pre-processing
Pre-processing of sequencing data is an essential step to ensure that the samples are

of acceptable quality for downstream processing. Pre-processing is run the same for

both the DNA and RNA samples, and should be applied on each sample.

3.1.1 Quality control using FASTQC
FASTQC (Andrews, 2010) is a tool that assesses the quality of the inputted sequenc-

ing reads. FASTQC generates an overview of the analyzed file, as well as a variety

of graphs which can be used to determine which sequences are of low quality and

need to be removed prior to any further analysis. It is recommended to look at the

FASTQC manual for a more detailed guide on both the basic arguments and an

in-depth analysis to understand the output. In addition to cleaning unwanted

—cont’d

Tool Name Manual Reference

Kallisto https://pachterlab.github.io/
kallisto/manual

Bray, Pimentel, Melsted,
and Pachter (2016)

netMHCpan https://services.healthtech.dtu.
dk/service.php?NetMHCpan-4.
1

Reynisson, Alvarez, Paul,
Peters, and Nielsen (2020)

netMHCIIpan https://services.healthtech.dtu.
dk/service.php?NetMHCIIpan-
4.0

Reynisson et al. (2020)

VEP https://github.com/Ensembl/
ensembl-vep

McLaren et al. (2016)

MuPeXI https://github.com/ambj/
MuPeXI/blob/master/doc/
MuPeXI_User_Manual.md

Bjerregaard, Nielsen,
Hadrup, Szallasi, and
Eklund (2017)
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sequences from the reads, quality control is an important step in determining whether

the analysis should be continued if the sample contains extreme anomalies such as

an overall poor base quality or strong A/T C/G imbalance. To run FASTQC, execute

the command fastqc on each of the samples with the following arguments:

Input:

• A fastq.gz file

Output:

• A html file containing the final reports which can be visualized using a web

browser

• A zip file which contains the individual plots and data files from the report

3.1.2 Trimming using Trim Galore!
Once FASTQC has been completed, the results can be used to decide whether further

steps are needed to trim the data in order to remove unwanted sequences. Trimming

is the only in silico approach available to increase the quality of the starting sequenc-
ing data, and consists in two main strategies: adapter trimming and quality trimming.

Adapter trimming is the removal of unwanted adapter sequences, DNA molecule

pieces with constant known sequences used during the sequencing process. These

adapters do not map to the human genome and will actively harm the mapping

process of any read they are present on, and should therefore be removed. Quality

trimming, on the other hand, removes the parts of the sequencing reads that have

not reach a high enough base calling accuracy, and is based on Phred score analysis.

A per-base PHRED score is given for each read in a FASTQ files, and reflects

the possibility that the sequencer incorrectly calls a given base. A Phred Score of

20 indicates the likelihood of finding 1 incorrect base call among 100 bases, which

is equivalent to a call precision of 99%. Lower base calling precision can starkly

affect variant calling, and it is thus common practice to filter out bases with Phred

scores lower than 20. As noted earlier, trimming the reads too aggressively can lead

to read lengths too short to allow correct mapping to the transcriptome (Williams

et al., 2016). It is also important to note that trimming may remove entire reads from

the sequencing data; in other words, it reduces the effective size of the data available,

to levels that may be too low to proceed. Should either of these situations arise,

it could be advisable not to proceed with the rest of the analysis, opting instead to

generate new data if possible.

There are many tools that can be applied for this step, here we opt for using Trim

Galore! (Krueger et al., 2021) to enhance the quality of the sequencing data. What

needs to be trimmed can be determined by looking at the FASTQC html files gen-

erated in Section 3.1.1 and executed with the assistance of the guidelines described in

the Trim Galore! manual. The guidance here demonstrates how to run Trim Galore!

with the default parameters, however these can be adjusted if needed by including

further parameters. Trim Galore! is a wrapper script for FASTQC and Cutadapt

therefore both of these tools need to be installed prior to running Trim Galore!.
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To run Trim Galore! execute the command trim_galore on each of the samples with

the following arguments:

Input:

• The fastq.gz files

Parameters:

• –paired: indicates the use of paired FASTQ files

• –fastqc: automatically performs FASTQC after trimming has been completed

Output:

• Trimmed FASTQ reads

• A Trim Galore! report

• A FASTQC html file containing the final reports which can be opened in a web

browser. It is recommended to analyze this report to confirm that trimming has

been correctly performed.

If further trimming is needed, this section should be repeated with adjusted param-

eters. Once quality control has been completed, the sequencing data can be used as

input for the bioinformatics workflows that are described below: DNA analysis,

RNA analysis, HLA typing, and neoantigen presentation.

3.2 DNA analysis
DNA analysis is performed on the pre-processed normal and tumor DNA paired-end

sequencing files. It is recommended to process the normal and tumor DNA samples

in separate directories. The RNA sample will be run later in Section 3.3. It is to be

noted that while the tools used here are relatively robust and resistant to changes in

tumor purity, the variant caller used on DNA is very sensitive to tumor contamination

in the normal sample (Kim et al., 2018). It is therefore recommended to check the

frequency of the normal_artifact filter in the final MuTect2 output; a high abundance

of such calls may reflect normal contamination. In such case, it may be advisable to

only proceed with the results of variant calling at the RNA level only; while less

specific, they are indeed less affected by normal contamination (Kim et al., 2018).

3.2.1 Read alignment using BWA
Read alignment is the first step of the DNA analysis workflow. BWA (Li, 2013) is the

tool used to align the reads to the reference genome; more information about this tool

and additional parameters can be found in its manual. BWA requires an indexed ref-

erence genome to be prepared, so that it can quickly and effectively retrieve refer-

ence sequence information from the genome during alignment. Indexing of the

reference genome can be done using the BWA command bwa index where the ref-
erence genome is in a FASTA format. It is recommended to use the latest genome

reference build, in this guide the hg38 reference obtained from Ensembl will be used.
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Additionally, duplicates will be marked here using the tool samblaster (Faust &

Hall, 2014), which can be added as an extension to the bwa command. The format of

the code is different here, the samblaster command is piped into the bwa command.

The –M argument must also be inserted to accommodate for the bwa mem –M option.

Additionally, samtools view –Sb is used to select an output to the sorted file in the

binary BAM format, which is recommended to reduce the file size.

Once the reference has been indexed, run the BWA-MEM algorithm by execut-

ing the command bwa mem with the following arguments:

Input:

• The indexed Homo_sapiens.GRCh38.dna.alt.fa.gz reference genome

• The trimmed FASTQ files for the normal or tumor DNA paired-end reads from

the output of Section 2.1.2

Parameters:

• -M: to mark shorter split reads as secondary hits. This parameter is required for

samblaster as well as for compatibility with the downstream algorithms

Picard and GATK

• samblaster -M: to mark duplicates, piped after the bwa command

Output:

• samtools view –Sb -> sample.out.bam: specified to output aBAM file containing

the aligned reads

3.2.2 Sort the SAM file by coordinate using GATK SortSam
SortSam (DePristo et al., 2011; McKenna et al., 2010; van der Auwera et al., 2013)

can be used to sort the SAM file from the output of Section 3.2.1 by coordinate, so

that the reads are sorted by the order with which they appear on the reference

genome. This tool requires many dependencies to run, which is why GATK suggests

installing and activating the GATK and Samtools conda package managers.

Run SortSam with Java using the command java -jar picard.jar SortSam with the

following arguments:

Input:

• The BAM file with the aligned reads from Section 3.2.1, supplied using the

parameter -I

Parameters:

• -SORT_ORDER coordinate: to sort the file by coordinate

Output:

• A BAM file containing the sorted reads
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3.2.3 BQSR with elPrep
elPrep (Herzeel et al., 2021) is a high-performance tool, which among sequencing

functions, can perform BQSR. elPrep relies on several tool-dependent file formats

which are straightforward to generate: the reference genome in an elfasta file format

and the known sites in an elsites file format. The elfasta reference file can be pro-

duced using the command “elprep fasta-to-elfasta hg38.fasta hg38.elfasta”. The
known variant sites file will contain the known polymorphic sites which will be

excluded from the output. This file can be generated using the command “elprep
vcf-to-elsites dbsnp_138.hg38.vcf dbsnp_138.hg38.elsites”. Make sure to look at

the elPrep manual for more information. To run BQSR, execute the command elprep
sfm with the following arguments:

Input:

• The BAM file from Section 3.2.2 output

• –reference: The hg38.elfasta reference file

• –known-sites: The file dbsnp_138.hg38.elsites containing the known variant

sites

Parameters:

• –bqsr: instructs elPrep to perform BQSR

Output:

• A BAM file containing the results of the BQSR-modified input file

3.2.4 Call Somatic SNV and INDEL variants using GATK MuTect2
The next stage is to call SNVs and INDELs using GATK MuTect2 (DePristo et al.,

2011; McKenna et al., 2010; van der Auwera et al., 2013). For DNA variant calling,

the “tumor-normal” mode of GATK MuTect2 should be used to process both the

tumor and its matching normal sample. It is also recommended to supply files con-

taining known variant sites to annotate such variants observed in the samples. These

reference files provide a baseline for the SNV calling and both the gnomAD and PoN

(Panel of Normals) reference files are provided by GATK.

gnomAD is a germline population resource which represents approximately

200k exomes and approximately 160k genomes; it provides a list of all variants iden-

tified in these samples which can be used here and can be used to calculate normal

contamination which will be taken into account in step 4 of this section. Addition-

ally, GATK provides a list of variants identified in a publicly available PoN, which is

comprised of 1000 normal samples. A custom panel can also be created using a

minimum of 40 normal samples from young, healthy individuals with technically

similar properties. This can be desirable when wanting to ensure that the properties

of the PoN are as close as possible to the tumor sample investigated. More infor-

mation on creating a PoN can be found in the GATK manual; in this protocol we

will use the publicly available GATK PoN. An interval list is also required for this

process, which is used to define positions of genomic regions in order to remove
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unwanted or unreliable areas to enable a faster analysis. An interval list for WGS

data is supplied by GATK.

The first step is to call somatic SNVs and INDELs with Mutect2. This will

generate an unfiltered Mutect2 call set which can then be filtered to ensure that only

true somatic mutations will be retained

� Step 1: run the files through GATK MuTect2. To call somatic SNV and INDEL

variants, run the command gatk Mutect2 with the following arguments:

Input:

• -I: The normal BAM from the output of Section 3.2.3 (use the parameter -normal

as demonstrated below to differentiate the normal sample from the tumor sample)

• -I: The tumor BAM from the output of Section 3.2.3

• -R: The Homo_sapiens.GRCh38.dna.alt.fa.gz reference genome

• -pon: The 1000g_pon.hg38.vcf.gz PoN reference

• –germline-resource: The af-only-gnomad.hg38.vcf.gz gnomAD known

germline variant list

• -L: The wgs_calling_regions.hg38.interval_list interval list for WGS

Parameters:

• -normal: supply the normal sample name with this parameter to differentiate the

normal sample from the tumor sample

Output:

• -O: A VCF file containing all the variants identified in the sample

• A .stats file containing the variant statistics

The next steps are used to decide which of the mutation candidates from the VCF

output of the previous step are likely to be true somatic mutations.

� Step 2: RunGetPileupSummaries. This is used to summarize read support for a set

number of known variant sites. This is run on both the normal and tumor samples

separately, and requires the input of the gnomAD variant list and the WGS

interval file. Run the command gatk GetPileupSummaries with the following

arguments:

Input:

• The normal/tumor output BAM file from step 1. Run these files separately

• -V: The af-only-gnomad.hg38.vcf.gz gnomAD known germline variant list

• -L: The wgs_calling_regions.hg38.interval_list interval list for WGS

Since the normal and tumor BAM files are run separately in this process, each run

will generate its own output.

Output:

• A file called normal_getpileupsummaries.table
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and

• A file called tumor_getpileupsummaries.table

� Step 3: Run CalculateContamination to estimate cross-sample contamination

in the reads from the tables from the output of step 2. This generates a table

used in step 4, FilterMutectCalls, to estimate the fraction of reads obtained from

cross-sample contamination for both normal and tumor samples. Run gatk
CalculateContamination with the following arguments:

Input:

• -matched: normal_getpileupsummaries.table

• -I: tumor_getpileupsummaries.table

Output:

• The output is calculatecontamination.table which is a table providing the

fraction contamination

� Step 4: Apply variant filtering using FilterMutectCalls. This applies the filters

from Step 3 to the raw output of Mutect2 from step 1. Run gatk FilterMutectCalls
with the following arguments:

Input:

• -R: The Homo_sapiens.GRCh38.dna.alt.fa.gz reference genome

• -V: The VCF file obtained from the output of step 1 of this process

• –stats: The .stats file from the output of step 1 of this process

• –contamination-table: The calculatecontamination.table table from step 3

Output:

• A filtered VCF file called filtered.vcf

In Section 3.4, variants present in both this file and the list generated later in

Section 3.3.5 as part of the RNA analysis will be identified. This will then be used

in Section 3.6.2 to predict p-HLA binding affinity and perform a MuPeXI-based

peptide extraction.

3.3 RNA analysis
The RNA analysis is similar to the DNA analysis workflow described in Section 3.2,

in that we aim to generate a list of SNV and INDELs. Different tools will be used for

some of the processes due to efficiency and accuracy.

3.3.1 Read alignment with STAR
For RNA-based read alignment in this protocol, STAR is used as it can accommodate

for exons better (Dobin et al., 2013). More detailed information on other parameters

that could be applicable for your sample can be found in the STAR manual. As with

most aligners, STAR requires an indexed genome reference, which can be created
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using the Homo_sapiens.GRCh38.dna.alt.fa.gz reference genome and the file con-

taining the annotated transcripts for the hg38 genome. To align the RNA reads,

run STAR with the following arguments:

� Step 1: Create genome indices. The directory where the indices will be stored

should be created before the STAR run with mkdir and should have writing

permissions:

Input:

• –genomeFastaFiles: The Homo_sapiens.GRCh38.dna.alt.fa.gz reference

genome

• –sjdbGTFfile: The Homo_sapiens.GRCh38.103.gtf.gz annotated transcripts

Parameters:

• –runMode genomeGenerate: to specify to STAR to create an index

• –runThreadN: specify the number of threads that will be used to generate the

indices

• – sjdbOverhang: specify the length of genomic sequence around the annotated

junction to be used. The default is 100.

Output:

• –genomeDir: The path to the directory created beforehand with the command

mkdir where the indices will be stored

• Multiple output files named prefix .run containing the genome index

� Step 2: Align the RNA reads using STAR. For the readFilesIn parameter, make

sure to input both trimmed paired end read files for the sample. To align the reads,

execute the command STAR with the following arguments:

Input:

• –genomeDir: The path to the directory where the indices generated in step 1

where stored

• –readFilesIn: The two trimmed paired-end read FASTA files for the tumor RNA

samples from the output of Section 2.1.2, leaving a space between each name

Parameters:

• –outSAMtype BAM SortedByCoordinate: so that the output is a BAM file and the

reads are sorted by coordinate

• –runThreadN: specify the number of threads that will be used to generate the

indices

Output:

• An aligned BAM file
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3.3.2 Identify duplicates with elPrep
In addition to BQSR (Section 3.3.4), elPrep (Herzeel et al., 2021) can be used to iden-

tify and mark duplicate reads in the aligned file to prevent overrepresentation of

amplified regions. To identify the duplicates, execute the command elprep sfm with

the following arguments:

Input:

• The BAM file from the STAR output in Section 3.3.1

Parameters:

• –mark-duplicates: to mark the duplicate reads

Output:

• The output of this process will yield a BAM file with its duplicates marked.

3.3.3 Split reads into exon segments with SplitNCigarReads
SplitNCigarReads (DePristo et al., 2011; McKenna et al., 2010; van der Auwera

et al., 2013) is a tool used to split a read with N cigar into individual exon segments.

This removes the Ns without removing any grouping information. It also performs

hard clipping of any overhanging reads into the intronic regions and reassigns the

mapping quality. To split the reads into exon segments, execute the command gatk
SplitNCigarReads with the following arguments:

Input:

• -R: The Homo_sapiens.GRCh38.dna.alt.fa.gz reference genome

• The BAM files from the elPrep output in Section 3.3.2

Output:

• A BAM file containing reads split at N cigars.

3.3.4 BQSR with elPrep
It is a good idea afterwards to run BQSR with elPrep (Herzeel et al., 2021) as done

previously in the DNA process. The parameters and input files should all be the

same as with DNA BQSR, however the RNA files should be used as the input file.

3.3.5 Somatic SNV and INDEL calling using Strelka2
Like Mutect2, Strelka2 (Kim et al., 2018) is used to call somatic SNVs and INDELs

in RNA-seq data. Strelka2 works in 2 stages, the first stage being configuration

including adjusting parameters and inputting sample data, the second stage being

workflow execution. It must be noted that Strelka2 requires at least Python version

2.6, and will not work with python versions 3.x. To ensure that Strelka can run

smoothly using this Python version and to prevent conflicts with other software

installations, it is recommended to run Strelka2 using a Python2-supporting docker

such as provided by the Sanger institute (https://github.com/cancerit/strelka2-
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manta), or in a virtual environment such as provided by conda—the strelka2 package

being available on the bioconda channel. To run the configuration step of somatic

SNV and indel calling using Strelka2, run path_to_strelka/configureStrelkaSomatic-
Workflow.py with the following arguments:

� Step 1: Configuration

Input:

• –normalBam: The normal DNA BAM file from the BQSR output in

Section 3.2.3

• –tumorBam: The RNA BAM file from the output of Section 3.3.4

• –referenceFasta: The Homo_sapiens.GRCh38.dna.alt.fa.gz reference genome

Output:

• A Python file called runWorkflow.py

� Step 2: Workflow execution. The next step is to execute the workflow stage of

Strelka2, using the command path_to_file/runWorkflow.py. There are no inputs

or parameters needed since all the configuration was already performed in step 1.

Output:

• A file called somatic.snvs.vcf.gz containing all the somatic SNVs in the tumor

sample

• A file called somatic.indels.vcf.gz containing all the somatic INDELS in the

tumor sample

In Section 3.2.4, variants present in both this output and the variant list generated as

part of the DNA analysis (Section 3.2.4) will be identified. These will then be used

in Section 3.6.2 to predict p-HLA binding affinity and perform a MuPeXI-based

peptide extraction.

3.4 Obtaining a final variant list
3.4.1 Identify overlaps between DNA and RNA variants using bcftools isec
Once variants have been identified for both the DNA and RNA samples, the VCF

files can be intersected to find variants present in both data types. This is to ensure

that only expressed, and therefore actionable neoantigens are kept. This can be done

using bcftools isec (Danecek et al., 2021). To save disk space, it is recommended

to zip and index the VCF files. This can be done using rtg tools (Cleary et al.,

2014). (rtg bgzip and rtg index). To identify the overlaps between DNA and RNA

variants, execute the command bcftools isec:
Input:

• -w1: The DNA filtered.vcf.gz from the output of Section 3.2.4 and the RNA

somatic.snvs.vcf.gz from the output of Section 3.3.5
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Output:

• A VCF file containing variants unique to the DNA VCF file

• A VCF file containing variants unique to the RNA VCF file

• A VCF file containing the overlapping variants from both the DNA and RNA

files

3.5 HLA-typing
To allow prediction of the p-HLA binding affinities, the HLA type of the sample

needs to be determined. The HLA-I and HLA-II alleles can be predicted based

on tumor DNA with the HLA-typing tool HLA-LA (Dilthey et al., 2019) by run-

ning./HLA-LA.pl with the following arguments.

Input:

• –BAM: The indexed BAM file generated with BQSR in Section 3.2.3 for the

tumor DNA sample

• –graph: The indexed graph constructed of reference haplotypes (how to get

the required data packages to build the graph is explained on the HLA-LA

GitHub page)

Parameters:

• –sampleID: A variable containing a unique sample ID for each sample

Output:

The main output file of HLA-LA is a dataframe (R1_bestguess.txt) containing

the specific HLA alleles and a number of quality indicators which represent the

probability with which the HLA alleles have been called.

3.6 Neoantigen prioritization
In this section the information gathered in the previous sections is combined to pre-

dict the neoantigens. Based on the specific HLA types and the neoantigens derived

from the called variants, the most important features of these neoantigens will be

analyzed to select only the confident and actionable candidates.

3.6.1 Expression analysis with Kallisto
Analyze the expression of the host genes harboring the mutations with the RNA-seq

based tool Kallisto (Bray et al., 2016) by running the kallisto quant command with

the following arguments. This step is important because no or limited (< 33 TPM)

(Wells et al., 2020) active transcription of the host gene reduces the likelihood

of generating mutant peptides to be presented by HLA molecules.

Input:

• The trimmed paired-end RNA FASTQ files of Section 3.1.2

• –index: The indexed Homo_sapiens.GRCh38.cdna.all.fa.gz reference

transcriptome, the transcriptome can be indexed with the kallisto index
command.

18 Neoantigen predictions for personalized anticancer vaccines

ARTICLE IN PRESS



Output:

• –output-dir: The directory to write the output to

The Kallisto quant command outputs different files in the output folder specified

with the –output-dir argument. The output file that will be used in the following steps

is the abundance.tsv file which contains for every transcript the length, the effective

length, the estimated count and the abundance in transcripts per million (TPM).

3.6.2 p-HLA binding affinity prediction and peptide extraction with MuPeXI
In this step the p-HLA I and the p-HLA II binding affinities will be predicted with

netMHCpan and netMHCIIpan (Reynisson et al., 2020), respectively, and peptides

with predefined lengths around the missense variant mutations, indels and frame-

shifts will be extracted by means of MuPeXI (Bjerregaard et al., 2017). As opposed

to most other similar software’s, MuPeXI has the distinct advantage of screening

each neoantigen against the complete human proteome to exclude potential self-

peptides, which is why it is selected for this step. The binding affinity prediction

steps with netMHCpan and netMHCIIpan are included in MuPeXI. To run MuPeXI,

the following software and Python modules should be installed: Python 2.7,

netMHCpan (HLA I) or netMHCIIpan (HLA II), Variant Effect Predictor (VEP)

(McLaren et al., 2016), biopython (Cock et al., 2009), numpy (Harris et al., 2020)

and pandas. RunMuPeXI with path/to/MuPeXI.py once for HLA I peptides and once

for HLA II peptides with the following arguments:

Input:

• References:

� cDNA: The Homo_sapiens.GRCh38.cdna.all.fa.gz reference transcriptome

� pep: The Homo_sapiens.GRCh38.pep.all.fa.gz peptide reference

� cosmic: The cancer gene census

• config.ini: this file will be automatically downloaded into the MuPeXI directory

while downloading the MuPeXI repository. Instructions to fill this in can be

found within the file and in the MuPeXI user manual on GitHub. The following

paths should be specified in the config.ini file:

� [netMHC]: the netMHCpan or netMHCIIpan binary path

� [EnsemblVEP]: the binary path to VEP (VEP) and to the directory containing

the cache database (VEPdir)

� [References]: path to the used references

� [PeptideMatch]: full path to the small C script named “pepmatch_db”

downloaded with MuPeXI

� –vcf-file: the VCF file from Section 3.4 containing the overlapping variants

between the DNA and RNA tumor samples called by MuTect2 and Strelka2,

respectively.

� –expression-file: the abundance.tsv output from Section 3.6.1 containing for

each transcript its transcript ID and mean expression.
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Parameters:

• HLA I peptides:

� Specify the HLA I binding affinity predictor netMHCpan in the config.ini file

� –alleles: comma separated list of the specific HLA I alleles called with

HLA-LA in Section 3.5. The format of the HLA alleles should be for

example HLA-A02:01

� –length: specify a peptide length from 9-11 amino acids

• HLA II peptides:

� Specify the HLA II binding affinity predictor netMHCIIpan in the

config.ini file

� –alleles: comma separated list of the specific HLA II alleles called

with HLA-LA in Section 3.5. The format of the HLA alleles should be for

example HLA-DRB111:03

� –length: specify a peptide length of 15 amino acids

Output:

The main output of MuPeXI is a TSV file with the extension .mupexi containing

the extracted neoantigens (Mutant peptide column) ranked according to their priority

score.

4 Concluding remarks
In this paper, we describe a state-of-the-art bioinformatics protocol for the prediction

of potential neoantigens from DNA and RNA sequencing data. To run this entire

workflow without the need of manual intervention, it can be built with a workflow

management system like Snakemake (Section 5) (K€oster & Rahmann, 2012). From

the peptides predicted in this protocol, it is crucial to only select the neoantigens that

are presented by the HLA molecules on the tumor’s cell surface and are able to elicit

an immune response—i.e., they need to be immunogenic (Lopes, Vandermeulen, &

Pr�eat, 2019; Lybaert et al., 2022).
Following this workflow, the immunogenic peptides can be selected based on the

priority score obtained from the MuPeXI output. This priority score ranges from

0 (worst) to 1 (best) and is based on the product of p-HLA presentation, abundance

term and a term related to dissimilarity between the mutant and its most similar nor-

mal peptide. Since the exact factors determining neoantigen immunogenicity remain

unclear, this priority score should be considered as a guide until additional studies on

neoantigen immunogenicity have been performed (Bjerregaard et al., 2017). The

Tumor Neoantigen Selection Alliance (TESLA) has a defined set of features and

corresponding cut-offs that determine the presentation likelihood and are associated

with immunogenicity of HLA I neoantigens. This feature set is comprised of the

expression level of the host gene (> 33 TPM), the p-HLA I binding affinity

(< 34 nM) and the p-HLA I binding stability (half-life > 1.4 h). Binding stability

can be analyzed with netMHCstabpan (Rasmussen et al., 2016). It is to be noted that
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while this set of cut-offs was best available, it still produced a considerable amount of

false negatives: only 55% of truly immunogenic peptides were labeled as such. For

neoantigens meeting these criteria, the neoantigens with either low agretopicity or

high foreignness are expected to be the most immunogenic with a recall rate of

75% (Kishton, Lynn, & Restifo, 2020; Wells et al., 2020). Immunogenicity predic-

tion can be performed with tools like the IEDB immunogenicity predictor (open-

source) or neoIM (Calis et al., 2013; Pfitzer, Lybaert, Bogaert, & Fant, 2022). To

induce a broad and strong immune response while still limiting the chance of

improper target selection and inclusion of false positive neoantigens, commonly

up to 20 neoantigens are selected. However, the optimal number of neoantigens

needed as target for personalized anticancer immunotherapy is still unknown

(de Mattos-Arruda et al., 2020; Lopes et al., 2019; Lybaert et al., 2022).

The workflow presented here is focused on HLA I binding peptides derived from

SNVs and INDELs. To make it more suitable for the detection of neoantigens in

“cold tumors”—i.e., tumors with a low mutation level—it can be extended with

the identification of non-canonical variants such as tumor-specific alternative

splicing variants, gene fusions, and transposable elements (Capietto, Hoshyar, &

Delamarre, 2022; Gupta, Li, Roszik, & Liz�ee, 2021; Lybaert et al., 2022). Addition-
ally, although genomic data is incredibly resourceful for identifying potential neoan-

tigens, further analyses using corresponding mass spectrometry data may be a strong

asset in verifying the presence of the genomically identified neoantigens in the tumor

cell ligandome (Xie, Shen, Gao, et al., 2023).

Although neoantigen prediction pipelines have already made promising progress,

there is still a need for improvement. Most current approaches are limited to HLA

I restricted neoantigens while the important role of HLA II peptides in cancer immu-

nity becomes more andmore clear (Blass &Ott, 2021; Fotakis, Trajanoski, & Rieder,

2021; Kishton et al., 2020; Sun, Chen, Meng, Wei, & Liu, 2017). Tools such as

netMHCIIpan for the prediction of HLA II peptides exist, but with far lower perfor-

mance. In addition, too little is currently known about the characteristics that make

HLA II peptides immunogenic, negatively affecting the accuracy of these methods

(Capietto et al., 2022; Gupta et al., 2021). In this protocol, netMHCpan is used

to predict the presentation of neoantigens by HLA I molecules. A drawback of

netMHCpan, and most HLA presentation prediction tools, is that their prediction

is based merely on the p-HLA binding affinity. Although p-HLA binding affinity

has a major influence on neoantigen presentation, there are many other steps in

the process that strongly affect whether a neoantigen is actually presented. Other

MHC-peptide binding and presenting tools such as neoMS, SHERPA, and NMER

take other cellular mechanisms into account such as protein degradation and peptide

transport, thereby greatly improving their performance (Gartner et al., 2021; Mill,

Bogaert, van Criekinge, & Fant, 2022; Pyke et al., 2021). However, it should be

noted that these tools are not open-source.

Furthermore, most neoantigen prediction pipelines predict immunogenicity only

based on the interaction between the HLAmolecule and the neoantigen. Even though
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it is an important feature of neoantigen immunogenicity, a strong p-HLA interaction

alone is not sufficient for a neoantigen to be immunogenic. To induce an immune

response, the p-HLA complex has to be recognized by the T-cell receptor causing

the need for accurate computational methods to assess TCR-pHLA binding

(de Mattos-Arruda et al., 2020; Lybaert et al., 2022). However, until such models

prove to be more robust, the currently proposed protocol offers a simple and easy-

to-use workflow for the identification and prioritization of neoantigens (Fotakis

et al., 2021; Kishton et al., 2020).

5 Addendum
5.1 Workflow management systems: Snakemake
A bioinformatics protocol as discussed in this article involves the execution of a large

number of chained steps, which can lead to increased complexity when running man-

ually. Workflow management systems like Snakemake make it possible to automate

these pipelines. A Snakemake workflow is defined in a ‘Snakefile’ composed of

different rules, each representing a different step in the pipeline. The main structure

of a rule consists of a rule name, the input and output files and the shell command or

Python code to be executed to create the output from the input files. The input and

output filenames may contain various wildcards whose values are automatically

inferred by Snakemake from the available files. By using the output of a previous

rule as input for the next rule, the steps are linked together, automating the protocol.

When Snakemake encounters an error while running, the output is saved at the point

of failure and output files created during the failing rule are deleted. Together with

Snakemake’s property to only execute rules if the output files are missing or if the

input files are newer than the output, this prevents duplication of work when resum-

ing the protocol. A Snakefile can be executed by using specific commands in

the command line. More information about Snakemake and the commands to exe-

cute the Snakemake workflows can be found in the manual (https://snakemake.

readthedocs.io/en/stable/).

5.2 Example Snakefile
This is an example Snakefile for executing the DNA pre-processing steps described

in this protocol. It pre-processes DNA samples called normal_DNA_reads1.fastq.gz,

normal_DNA_reads2.fastq.gz, tumor_DNA_reads1.fastq.gz and tumor_DNA_-

reads2.fastq.gz. This Snakefile can be executed by running the shell command.

snakemake –cores 1 normal_DNA_reads1_val_1.fq.gz
tumor_DNA_reads1_val_1.fq.gz

normal_DNA_reads2_val_2.fq.gz tumor_DNA_reads2_val_2.fq.gz
normal_DNA_reads1_val_1_fastqc.htmltumor_DNA_reads1_val_1_fastqc.

html
normal_DNA_reads2_val_2_fastqc.htmltumor_DNA_reads2_val_2_fastqc.

html
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rule fastqc:
input:

fastq1="{id}_reads1.fastq.gz",
fastq2="{id}_reads2.fastq.gz"

output:
fastqc1="{id}_reads1_fastqc.html",
fastqc2="{id}_reads2_fastqc.html"

shell:
'''
fastqc {input.fastq1}
'''

rule trim_galore:
input:
read1="{id}_reads1.fastq.gz",
read2="{id}_reads2.fastq.gz"

output:
"{id}_reads1_val_1.fq.gz",
"{id}_reads2_val_2.fq.gz",
"{id}_reads1_val_1_fastqc.html",
"{id}_reads2_val_2_fastqc.html"

shell:
'''
trim_galore –paired –fastqc {input.read1} {input.read2}
'''
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